Intransitively Winning Chess Players’ Positions | Библиотека Института психологии РАН

Библиотека Института психологии РАН

Intransitively Winning Chess Players’ Positions

Poddiakov A.
Doklady Mathematics ВАК SCOPUS WOS
ТИП ПУБЛИКАЦИИ статья в журнале - научная статья
ГОД 2024
ЯЗЫК EN
АННОТАЦИЯ
Chess players’ positions in intransitive (rock-paper-scissors) relations are considered. Intransitivity of chess players’ positions means that: position A of White is preferable (it should be chosen if choice is possible) to position B of Black, if A and B are on a chessboard; position B of Black is preferable to position C of White, if B and C are on the chessboard; position C of White is preferable to position D of Black, if C and D are on the chessboard; but position D of Black is preferable to position A of White, if A and D are on the chessboard. Intransitivity of winningness of chess players’ positions is considered to be a consequence of complexity of the chess environment—in contrast with simpler games with transitive positions only. The space of relations between winningness of chess players’ positions is non-Euclidean. The Zermelo-von Neumann theorem is complemented by statements about possibility vs. impossibility of building pure winning strategies based on the assumption of transitivity of players’ positions. Questions about the possibility of intransitive players’ positions in other positional games are raised.
ЦИТАТА
Poddiakov, A. Intransitively Winning Chess Players’ Positions / A. Poddiakov // Doklady Mathematics. – 2024. – Т. 110. – № S2. – P. S391-S398
АВТОРЫ

Поддьяков Александр Николаевич

ЛАБОРАТОРИЯ ПСИХОЛОГИИ И ПСИХОФИЗИОЛОГИИ ТВОРЧЕСТВА
Главный научный сотрудник

Публикаций в поиске

177
ПЕДАГОГИЧЕСКАЯ ПСИХОЛОГИЯ ОБЩАЯ ПСИХОЛОГИЯ, ПСИХОЛОГИЯ ЛИЧНОСТИ, ИСТОРИЯ ПСИХОЛОГИИ ОБУЧЕНИЕ
ПОХОЖИЕ ПУБЛИКАЦИИ
2022 год

2017 год

2016 год

2012 год